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Pour comprendre ce que sont les statistiques bayésiennes, il faut comprendre :

Le théorème de Bayes

Une vraisemblance et le maximum de vraisemblance

La loi binomiale

Mais pas de panique, nous allons revenir sur ces aspects ici.

© 2025 Romain di Stasi.
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P 𝐴 𝐵 =
P 𝐵 𝐴  . 𝑃(𝐴)

𝑃(𝐵)

Thomas Bayes

Le théorème de Bayes

Contrairement aux statistiques fréquentistes, les statistiques bayésiennes ne 

suggèrent pas que la recherche part de zéro.

Tout part du mathématicien Britannique Thomas Bayes (1702–1761)

Probabilité de 

l’hypothèse A 

sachant les 

données B

Probabilité de 

l’hypothèse A 

sachant les 

données B

Probabilité de 
l’hypothèse avant 

d’avoir vu les données 
→ probabilité A priori.

Probabilité d’observer les 
données (toutes hypothèses 

confondues) → évidence.

publié à titre posthume par Richard Price

(Kruschke 2015, p. 99-118) 
© 2025 Romain di Stasi.
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Le théorème de Bayes – une brève histoire

P(B)

P(A)

P 𝐴 | 𝐵 = 𝑃 𝐴 . 𝑃(𝐵|𝐴)

P 𝐵 | 𝐴 = 𝑃 𝐵 . 𝑃(𝐴|𝐵)

Cela revient au même que faire l’inverse :

Thomas Bayes montre ceci… 

Le problème, c’est qu’écrit ainsi, on ne peut pas calculer la probabilité d’un événement en connaissant sa cause 

(l’autre probabilité). En effet, si l’on considère que B est la cause d’une partie de A, alors pour pouvoir estimer la 

probabilité de A étant donné B, il est indispensable de connaître la probabilité de B.

𝑃 𝐴 . 𝑃(𝐵|𝐴) = 𝑃 𝐵 . 𝑃(𝐴|𝐵)

Donc on obtient l’égalité suivante :
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(Kruschke 2015, p. 99-118) 
© 2025 Romain di Stasi.

https://www.youtube.com/watch?v=x-2uVNze56s
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Le théorème de Bayes – une brève histoire

Pierre-Simon Laplace

Thomas Bayes lui-même ne s’y est pas intéressé. C'est son ami Richard Price qui a publié ses travaux après sa 

mort.

Puis Pierre-Simon Laplace a découvert l’intérêt de l’égalité mise en évidence par Thomas Bayes qu’il a 

reformulée ainsi:

𝑃 𝐴 . 𝑃(𝐵|𝐴) = 𝑃 𝐵 . 𝑃(𝐴|𝐵) 𝑃(𝐵|𝐴) =
𝑃 𝐵 . 𝑃(𝐴|𝐵)

𝑃(𝐴)

Pourquoi cela change toute notre approche ? Ici il 

faut revenir aux « vraisemblance » et à la manière 

dont les statistiques fréquentistes fonctionnent 

pour les différencier de l’approche bayésienne. 

Appelé probabilité 

inverse

(Kruschke 2015, p. 99-118) 
© 2025 Romain di Stasi.



𝑃(𝑥|𝐻𝑜)

Introduction Le théorème de Bayes – une brève histoire

Vraisemblance des résultats x 

dans le cadre d’une hypothèse H

Plausibilité de l’hypothèse H 

au vu des résultats x

𝑃(𝐻𝑜|𝑥)

Quelle est la probabilité que j’aie un 

résultat x dans le cas où j’ai une hypothèse 

H. C’est « la vraisemblance du résultat ». 

C’est tout ou rien, soit je conserve, soit je 

rejette Ho. 

Quelle est la probabilité que mon hypothèse 

H soit vraie au vu des résultats obtenus x, 

c’est la plausibilité de mes hypothèses. 

Elles permettent d’évaluer les niveaux de 

crédibilités de chaque hypothèse.

Fréquentiste Bayésiens

6
© 2025 Romain di Stasi.



Introduction Le théorème de Bayes – une brève histoire

J’entends un bruit de grincement de parquet, c’est à cause de

H1: 2 % H2: 32 % H3 :66 %

Contrairement aux fréquentistes, 

les bayésiens n’éliminent pas les 

hypothèses : ils les évaluent.

7

Rappelez vous l’exemple de l’OVNI

© 2025 Romain di Stasi.



Introduction Le théorème de Bayes – une brève histoire

𝑃(𝑥|𝐻𝑜)

Vraisemblance des résultats x 

dans le cadre d’une hypothèse H
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Soit H0

Si 𝑃 𝑥 𝐻𝑜 < 1 %

Alors on rejette H0, 

l’hypothèse doit être fausse

Si 𝑃 𝑥 𝐻𝑜 ≥ 1 %

Alors on doit retenir H0

Ronald Fisher

Ronald Fisher a rejeté le concept de 
probabilité inverse pour deux raisons: 

(1) Trop complexe à calculer

(2) Trop subjectif

8
© 2025 Romain di Stasi.



Introduction Le théorème de Bayes – une brève histoire

Ronald Fisher a rejeté le concept de probabilité inverse pour deux raisons: 

(1) Trop complexe à calculer

9

𝑃 𝐻0 𝑥 =
𝑃 𝑥 𝐻0 . 𝑃(𝐻0)

𝑃 𝑥 𝐻0 . 𝑃 𝐻0 + 𝑃 𝑥 𝐻1 . 𝑃(𝐻1)

𝑃 𝐻1 𝑥 =
𝑃 𝑥 𝐻1 . 𝑃(𝐻1)

𝑃 𝑥 𝐻0 . 𝑃 𝐻0 + 𝑃 𝑥 𝐻1 . 𝑃(𝐻1)

Il faut calculer les vraisemblance 

de chaque hypothèse…

(2) Trop subjective

Fréquentiste

𝑃 𝐻1 𝑥 =
𝑃 𝑥 𝐻1 . 𝑃(𝐻1)

𝑃(𝑥)

Prior

Il faut avoir un a priori sur l’hypothèse 

(prédictions) avant même de l’avoir testée. 

© 2025 Romain di Stasi.



Introduction Le théorème de Bayes – une brève histoire

Ronald Fisher a rejeté le concept de probabilité inverse pour deux raisons: 

(1) Trop complexe à calculer

Cette difficulté est avant tout mathématique, mais le concept reste simple.

Cela n’est plus un problème, maintenant que des ordinateurs peuvent réaliser ces 

calculs en quelques millionièmes de seconde. 

(2) Trop subjectif

Les statistiques fréquentistes ne le sont pas moins puisqu’elles reposent sur des choix. 

10
© 2025 Romain di Stasi.



Introduction Le théorème de Bayes – une brève histoire

Ronald Fisher a rejeté le concept de probabilité inverse pour deux raisons: 

(2) Trop subjectif

Les statistiques fréquentistes ne sont pas moins subjectives, car elles reposent aussi sur des choix.

11

         

      

                     

                      

                                  

           

       

       

En fréquentiste, cette subjectivité est juste masquée artificiellement ! 
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Les statistiques bayésiennes ont le mérite d’assumer cette subjectivité !
© 2025 Romain di Stasi.

https://www.youtube.com/watch?v=x-2uVNze56s


Introduction Le théorème de Bayes – une brève histoire

Ronald Fisher a rejeté le concept de probabilité inverse pour deux raisons: 

(2) Trop subjectif

12

Mais… les statistiques bayésiennes sont parmi les plus proches de 

l’approche hypothético-déductive, puisqu’elles traduisent directement ce 

qu’on appelle la falsification de Popper.

Karl Popper

En fréquentiste on part de 𝐻0 est synonyme de pas d’effet 

et on ne peut jamais l’accepter. 

En Bayésien, on ne se contente pas de tester une hypothèse nulle H₀ comme en 

fréquentiste, mais on compare explicitement plusieurs hypothèses ou modèles 

concurrents (H₀ et H₁) à l’aide du facteur bayésien (BF). Cette logique rend plus 

visible l’idée poppérienne de falsification, puisque chaque hypothèse est 

réellement mise à l’épreuve par rapport à une autre.  Il est donc tout à fait possible 

de conclure qu’il y a davantage de soutien pour H₀, plutôt que de la rejeter 

systématiquement. (McElreath 2015, p. 5) 
© 2025 Romain di Stasi.



Introduction Le théorème de Bayes – une brève histoire
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Pour rappel, la falsification selon Popper repose sur l’idée que, pour qu’une discipline soit considérée 

comme scientifique, ses hypothèses doivent être « falsifiables ». Il doit être possible de vérifier 

empiriquement si une hypothèse peut être réfutée ou non.

Il est impossible de montrer empiriquement que Dieu existe ou n’existe pas, 

c’est pourquoi la religion n’est pas une science. 

Pour reprendre l’exemple des moutons du cours précédent. 

Hypothèse 1 – tous les moutons sont 

blanc ou noir

Hypothèse 2 – presque tous les moutons sont blancs 

ou noirs mais il en existe des oranges

© 2025 Romain di Stasi.
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Pour reprendre l’exemple des moutons du cours précédent. 

Hypothèse 1 – tous les moutons sont 

blanc ou noir

Hypothèse 2 – presque tous les moutons sont blancs 

ou noirs mais il en existe des oranges

Les statistiques Bayésiennes c’est exactement ça. Une évolution des connaissances. 

Croyance A priori (Prior 1) – tous les 

moutons sont blanc ou noir.

Réfuté 

Croyance A posteriori (Posterior) – presque tous 

les moutons sont blancs ou noirs mais il en existe 

des oranges.

Qui deviendra le Prior de l’étude 

suivante. © 2025 Romain di Stasi.



Introduction Statistiques Fréquentistes vs. bayésiennes, une 
illustration dans un jeu de rôle.
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D4 D6 D8 D10 D12 D20

J’ai le D12, quelles sont les chances que j’aie 

chaque résultat possible ?

Il y a 12 faces numérotés donc 12 résultats possibles ? 
100 %

12
= 8,3 % pour chaque face.

Si les faces ne sont pas équiprobables, on peut 

effectuer 10 000 lancers et établir une table de 

distribution empirique.

8,3 %

1 2 3 4 5 6 7 8 9 10 11 12

Cela est vrai pour n’importe quel type de dés. 

© 2025 Romain di Stasi.
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D4 D6 D8 D10 D12 D20

L’objectif sera de répondre à la question suivante :

Le maître de jeu lance, il fait un 7. Est-ce que c’est un résultat extraordinaire ?

Le statisticien fréquentiste dira que cela dépend de ce qu’on appelle un résultat extraordinaire.

Il faudra définir un seuil pour différencier l’ordinaire de l’extraordinaire. Si on considère un seuil 

à 1 % (𝑝𝑠𝑒𝑢𝑖𝑙 ) et que ma proba dans un D12 est de 8,3 %. Non ce n’est pas un résultat 

extraordinaire. Pas besoin de remettre en doute le maître de jeu. 

Toutefois s’il tire 10 fois 7, là je pourrais me poser la question puisque là si j’ai 1/12 la probabilité 

de base qui est répétée 10 fois nous avons
1

1210  ≈ 10−11 ce qui deçà de 1 % (𝑝𝑠𝑒𝑢𝑖𝑙).

Statistiques Fréquentistes vs. bayésiennes, une 
illustration dans un jeu de rôle.

© 2025 Romain di Stasi.
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D4 D6 D8 D10 D12 D20

L’objectif sera de répondre à la question suivante :

Le maître de jeu lance, il fait un 7. Est-ce que c’est un résultat extraordinaire ? 

Le statisticien bayésien se demandera : quel dé a été lancé ? 

Ici, je ne cherche pas les chances d’obtenir ce résultat directement, mais davantage 

quel est le dé qui a été lancé.

Statistiques Fréquentistes vs. bayésiennes, une 
illustration dans un jeu de rôle.

© 2025 Romain di Stasi.
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L’objectif sera de répondre à la question suivante :

Le maître de jeu lance, il fait un 7. Est-ce que c’est un résultat extraordinaire ?

Le statisticien bayésien se demandera : quel dé a été lancé ? 

Ici, je ne cherche pas les chances d’obtenir ce résultat directement, mais davantage quel 

est le dé qui a été lancé.

D4 D6 D8 D10 D12 D20

16,7 % 16,7 % 16,7 % 16,7 % 16,7 % 16,7 %

25 % 25 % 25 % 25 %

Statistiques Fréquentistes vs. bayésiennes, une 
illustration dans un jeu de rôle.

© 2025 Romain di Stasi.
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L’objectif sera de répondre à la question suivante :

Le maître de jeu lance, il fait un 7. Est-ce que c’est un résultat extraordinaire ? 

Le statisticien bayésien se demandera : quel dé a été lancé ? 

Ici, je ne cherche pas les chances d’obtenir ce résultat directement, mais 

davantage quel est le dé qui a été lancé.

D4 D6 D8 D10 D12 D20

16,7 % 16,7 % 16,7 % 16,7 % 16,7 % 16,7 %

25 % 25 % 25 % 25 %

D’accord, mais si nous devions parier, quel est le dé ayant la plus forte probabilité d’avoir été utilisé ?

L’approche fréquentiste considère que les chances sont égales, ce qui est une erreur...

Statistiques Fréquentistes vs. bayésiennes, une 
illustration dans un jeu de rôle.

© 2025 Romain di Stasi.
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D4 D6 D8 D10 D12 D20

H1 H2 H3 H4 H5 H6

Différents dés sont les hypothèses pour modéliser le résultat obtenu.

Statistiques Fréquentistes vs. bayésiennes, une 
illustration dans un jeu de rôle.

© 2025 Romain di Stasi.
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H1

H2

H3

H4

H5

H6

Vraisemblance de mes résultats

0 %

0 %

12,5 %

10 %

8,4 %

5 %

Ma croyance A posteriori

16,6 %

16,6 %

16,6 %

16,6 %

16,6 %

16,6 %

Ma croyance A priori (prior)

7

?

Le théorème Statistique bayésienne – et lancé de dés
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H1

H2

H3

H4

H5

H6

Vraisemblance de mes résultats

0 %

0 %

12,5 %

10 %

8,4 %

5 %

16,6 %

16,6 %

16,6 %

16,6 %

16,6 %

16,6 %

Ma croyance A priori (prior)

7

𝑃 𝐻3 𝑥 =
𝑃 𝑥 𝐻3). 𝑃(𝐻3)

𝑃(𝑥)
surface

1
6
,6

12,5%

Statistique bayésienne – et lancé de désLe théorème

© 2025 Romain di Stasi.
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H1

H2

H3

H4

H5

H6

Vraisemblance de mes résultats

16,6 %

16,6 %

16,6 %

16,6 %

16,6 %

16,6 %

Ma croyance A priori (prior)

7

1
6
,6

12,5

1
6
,6

1
6
,6

1
6
,6

10

8,4

5

16,6 × 5 ∶ 100 = 0,83 %

16,6 × 8,4 ∶ 100 = 1,39 %

16,6 × 10 ∶ 100 = 1,66 %

16,6 × 12,5 ∶ 100 = 2,062 %

Surface

Surface

Surface

Surface

෍ 𝑆𝑢𝑟𝑓𝑎𝑐𝑒𝑠

𝑃 𝐻3 𝑥 =
𝑃 𝑥 𝐻3). 𝑃(𝐻3)

𝑃(𝑥)

Ici c’est… 

2,062 + 1,66 + 1,39 + 0,83 = 5,942 %

Statistique bayésienne – et lancé de dés

Le 𝑃 𝑥 de cette équation est la 

réponses que les statisticiens 
fréquentistes cherchent, mais ils 

vont systématiquement s′arrêter là.

Le théorème

© 2025 Romain di Stasi.
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H1

H2

H3

H4

H5

H6

Vraisemblance de mes résultats

16,6 %

16,6 %

16,6 %

16,6 %

16,6 %

16,6 %

Ma croyance A priori (prior)

7

1
6
,6

12,5

1
6
,6

1
6
,6

1
6
,6

10

8,4

5

16,6 × 5 ∶ 100 = 0,83 %

16,6 × 8,4 ∶ 100 = 1,39 %

16,6 × 10 ∶ 100 = 1,66 %

16,6 × 12,5 ∶ 100 = 2,062 %

Surface

Surface

Surface

Surface

Ma croyance A posteriori

2,062

5,942
× 100

= 34,70 %

1,66

5,942
× 100

= 27,93 %

1,39

5,942
× 100

= 23,39 %

0,83

5,942
× 100

= 13,97 %

0,166 × 0,125  × 100 = 2,062 %

H6 = 13,97 %

H5 = 23,39 %

H4 = 27,93 %

H3 = 34,70 %

Statistique bayésienne – et lancé de dés

0,166 × 0,10  × 100 = 1,66 %

0,166 × 0,084  × 100 = 1,39 %

0,166 × 0,005  × 100 = 0,083 %

Le théorème

© 2025 Romain di Stasi.
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H1

H2

H3

H4

H5

H6

0 %

0 %

34,70 %

27,93 %

23,39 %

13,97 %

Nouvelle croyance nouveau A priori 

après le premier lancer (prior)

Puis il y aura une réactualisation des connaissance à 

chaque lancer. Si je relance un 7, on refait le calcul. 

Statistique bayésienne – et lancé de désLe théorème

© 2025 Romain di Stasi.
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H1

H2

H3

H4

H5

H6

Nouvelle croyance nouveau A priori

7

Ma croyance A posteriori

Statistique bayésienne – et lancé de dés

0 %

0 %

34,70 %

27,93 %

23,39 %

13,97 %

Le théorème

© 2025 Romain di Stasi.
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H1

H2

H3

H4

H5

H6

0%

0%

29,82%

24,57%

20,14%

12,2%

Nouvelle croyance nouveau a priori

7

Ma croyance a posteriori

Statistique bayésienne – et lancé de dés

12,5

10

8,4

5

34,70 × 12,5 ∶ 100 = 4,34 %

27,93 × 10 ∶ 100 = 2,79 %

23,39 × 8,4 ∶ 100 = 1,96 %

13,97 × 8,4 ∶ 100 = 1,17 %

𝑃 𝑥 = 4,34 + 2,79 + 1,96 + 1,17

= 10,26 %

Attention, je l'exprime 

ici en pourcentage, 

mais ce n'est pas 

obligatoire.

Ma croyance a posteriori

H5 = 19,10 %

H4 = 27,19 %

H3 = 42,30 %

H6 = 11,40 %

0 %

0 %

34,70 %

27,93 %

23,39 %

13,97 %

Le théorème

© 2025 Romain di Stasi.



P 𝑆 𝐴 =
P 𝑆 𝐴  . 𝑃(𝐴)

𝑃(𝑆)

Un théorème que nous utilisons tous les jours sans le savoir. 

C’est un agent secret

C’est un singe
La question que poserait le théorème de Bayes…

Quelle est la probabilité qu’il s’agisse d’un 

agent secret sachant qu’il a une tête de singe 

et une banane ? 

Si on regroupait les indices « banane » et 

« tête de singe » en une seul catégorie ça 

donnerait… 

Le théorème de Bayes

28

Le théorème

(Voir aussi l’exemple de Kruschke 2015, p. 102, table 5.2) 

© 2025 Romain di Stasi.



𝑃 𝑆 𝐴 =
𝑃(𝑆 ∩ 𝐴)

𝑃(𝐴)
=

𝑃 𝑆 𝐴 . 𝑃(𝑆)

𝑃 𝐴 𝑆 . 𝑃 𝑆 + 𝑃 𝐴 𝑆 . 𝑃(𝑆)

Probabilité qu’il s’agisse d’un singe alors qu’il ressemble à James Bond

Mettons que nous ayons une chance sur dix de croiser un singe, puisque nous sommes à proximité 

d’un cirque ou d’un zoo. On a donc 𝑃(𝑆) = 0,1, où S désigne l’événement "c’est un singe". 

Supposons également que, si c’est un singe, il y a 95 % de chances d’observer cette image : 

𝑃 𝑆 𝐴 = 0,95. 𝑃 𝑆  est la probabilité inverse de 𝑃(𝑆) donc 𝑃 𝑆  = 1 - 𝑃(𝑆). Enfin il faut supposer 

également que la probabilité d’avoir cette photo ne s’agissant pas d’un singe est de 1 % donc 

𝑃 𝐴 𝑆 = 0,01. Cela donne…

𝑃 𝑆 𝐴 =
0,95.0,1

0,95.0,1+0,01.0,9
=

0,095

0,095+0,009
=

0,095

0,104
 ≈ 0,913

Le théorème de Bayes

29

Le théorème

(Voir aussi l’exemple de Kruschke 2015, p. 102, table 5.2) 

© 2025 Romain di Stasi.



Le théorème de Bayes

Un autre exemple… 

Dans un cas de test de dépistage d’une maladie

Tu es médecin et tu veux estimer la probabilité qu’un patient soit malade, sachant que son 

test est positif.

Nous avons 3 probabilités :

𝑀𝑎𝑙 = « le patient a la maladie »

𝑀𝑎𝑙  = « le patient n’a pas la maladie »

𝑃𝑜𝑠 = le test est positif

Nous avons 3 données connues (priors) :

𝑃 𝑀𝑎𝑙 =prévalence de la maladie, 10% donc 0,1

Spécificité du test 𝑃 𝑃𝑜𝑠 |𝑀𝑎𝑙 = 0,05 puisqu’il y a 5% de chance d’un faux positif

Sensibilité du test 𝑃 𝑃𝑜𝑠 |𝑀𝑎𝑙 = 0,99 puisque le test détecte 99% des cas réel 30

Le théorème

(Adapté de Kruschke 2015, p. 104, table 5.4) 
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Le théorème de Bayes

Un autre exemple… 

Dans un cas de test de dépistage d’une maladie

Quelle est la probabilité que le patient soit malade sachant qu’il a eu un test positif ?

𝑃 𝐴 𝐵 =
𝑃 𝑃𝑜𝑠 𝑀𝑎𝑙 . 𝑃(𝑀𝑎𝑙)

𝑃 𝑃𝑜𝑠 𝑀𝑎𝑙 . 𝑃 𝑀𝑎𝑙 + 𝑃(𝑃𝑜𝑠|𝑀𝑎𝑙). 𝑃(𝑀𝑎𝑙)

=
0,99.0,1

0,99.0,1+0,05.0,99
=

0,099

0,099+0,0495
=

0,099

0,1485
 ≈ 0,667 ≈ 66,7 %

Ainsi, même si le test est fiable à 99 % en sensibilité et à 95 % en spécificité, si la maladie est 

rare (1 %), alors un test positif ne signifie pas nécessairement que la personne est malade.

31

Le théorème

(Adapté de Kruschke 2015, p. 104, table 5.4) 
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La notion de vraisemblance
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Le théorème

Dans cet exemple de dépistage de la maladie, il faut bien comprendre la notion de vraisemblance…

Ici nous avons mesuré la probabilité que le test soit positif sachant que 𝑃 𝐴 , la prévalence 

de la maladie est égale à 0,1…

La vraisemblance correspond à la probabilité d’observer certaines données à supposer   ’    hypothèse 

soit vraie. Nous l’avons déjà vue à travers l’exemple des dés. Par exemple, si je pense qu’il y a 40 % de 

chances que le dé utilisé soit un D10, la vraisemblance est la probabilité que ce dé ait produit un 7 – 

autrement dit : quelle est la compatibilité entre cette hypothèse et mon observation.

Dans le contexte du dépistage, la vraisemblance correspond à la probabilité que le test soit 

positif si la personne est réellement malade.

Ne pas confondre vraisemblance et croyance A posteriori

𝑃 𝑡𝑒𝑠𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑓 𝑚𝑎𝑙𝑎𝑑𝑒 𝑃 𝑚𝑎𝑙𝑎𝑑𝑒 𝑡𝑒𝑠𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑓

Vraisemblance Croyance 
A posteriori

(McElreath 2015, p. 32-33) 
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Vraisemblance vs. Probabilité a posteriori
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Le théorème

Cas du dépistage

Terme Représente quoi Example dans le test

Croyance A priori 
(prior)

Ce que je pense avant de 
voir le test 𝑃 𝑀𝑎𝑙 = 1%

Vraisemblance
(Likelihood)

Probabilité d’observer le 
test positif si la personne 

est malade
𝑃 𝑃𝑜𝑠

Croyance A 
posteriori 
(posterior)

Ce que je crois après avoir 
vu le test 𝑃 𝑀𝑎𝑙 = 1

Prior

Likelihood

Posterior

© 2025 Romain di Stasi.
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Le théorème

Terme Représente quoi Example dans le test

Croyance A priori 
(prior)

Ce que je pense avoir 
comme résultat P(dé = D10) = 40%

Vraisemblance
(Likelihood)

Probabilité d’obtenir le 
résultat si l’hypothèse est 

vraie
P(7)

Croyance A 
posteriori 
(posterior)

Ce que je crois après avoir 
vu le test P (Dé = D10)

Cas des dé

Prior

Likelihood

Posterior

La croyance A posteriori (ou posterior) représente la combinaison de l’information qui provient 

de l’observation des données et nos croyances A priori (prior)

Vraisemblance vs. Probabilité a posteriori

© 2025 Romain di Stasi.
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Le théorème

0%

0%

29,82%

24,57%

20,14%

12,2%

7

Posterior 

12,4

10

8,4

5

34,66 × 12,4 ∶ 100 = 4,30 %

27,96 × 10 ∶ 100 = 2,80 %

23,41 × 8,4 ∶ 100 = 1,97 %

13,98 × 8,4 ∶ 100 = 1,17 %

H5 = 19,26 %

H4 = 27,38 %

H3 = 41,99 %

H6 = 11,44 %

0 %

0 %

34,66 %

27,96 %

23,41 %

13,98 %

Prior

Rappel
Vraisemblance vs. Probabilité a posteriori
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Le théorème
Rappel

Likelihood
Prior Posterior

P 𝐴 𝐵 =
P 𝐵 𝐴  . 𝑃(𝐴)

𝑃(𝐵)

La probabilité de nos données 

sachant notre ou nos hypothèses

Donc

Vraisemblance

Vraisemblance vs. Probabilité a posteriori

© 2025 Romain di Stasi.



Prior et loi binomiale 
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Le théorème

Afin de bien comprendre l’approche bayésienne et la vraisemblance il est assez intéressant de 

considérer une loi simple, la loi binomiale, pour plusieurs raisons. 

Elle modélise des situations très courantes : succès/échec répétés.

Elle joue un rôle central en tant que vraisemblance dans l’approche 

bayésienne.

Elle est associée à une loi conjuguée simple : la loi bêta.

Puisque… 

Cette loi se base sur une probabilité a priori comme dans 

l’équation de Bayes

Elle est donc utilisable… 

Dans de nombreux cas qui nous intéressent en psychologie et 

neuroscience (e.g., différence de pourcentages). 

© 2025 Romain di Stasi.
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Loi Binomiale

La loi binomiale consiste en la probabilité de constater une fréquence observée en fonction 

d’une fréquence attendue.

Cette dernière est binaire : cela peut se traduire par le fait d’avoir réussi on non son 

exam, d’être malade ou non, marquer à un panier de basket ou non, etc.

Loi Binomiale
Rappel

Admettons qu'un joueur de basket ait 60 % de chances de réussir 

un lancer franc.

Quelle est la probabilité qu’il ne marque aucun point en 

deux essais ? 

Une fois sur les deux essais ? 

Deux fois sur les deux essais ? 

©
 e
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(Kruschke 2015, p. 72-97 & 123-141) 
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Loi BinomialeLoi Binomiale
Rappel

Admettons qu'un joueur de basket ait 60 % de chances de réussir 

un lancer franc.

Quelle est la probabilité qu’il ne marque aucun point en deux essais ? 

©
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 d

e
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(Kruschke 2015, p. 72-97 & 123-141) 

© 2025 Romain di Stasi.

https://www.youtube.com/watch?v=6YzrVUVO9M0&t=173s


40

Loi BinomialeLoi Binomiale
Rappel

Admettons qu'un joueur de basket ait 60 % de chances de réussir 

un lancer franc.

𝑝 𝑓𝑎𝑖𝑙, 𝑓𝑎𝑖𝑙 =  1 − 𝑝 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 × 1 − 𝑝 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 = 0,40 × 0,40
= 0,16 𝑑𝑜𝑛𝑐 16%

Quelle est la probabilité qu’il ne marque aucun point en deux essais ? 
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(Kruschke 2015, p. 72-97 & 123-141) 
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Loi BinomialeLoi Binomiale
Rappel

Admettons qu'un joueur de basket ait 60 % de chances de réussir 

un lancer franc.

𝑝 𝑓𝑎𝑖𝑙, 𝑓𝑎𝑖𝑙 =  1 − 𝑝 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 × 1 − 𝑝 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 = 0,40 × 0,40
= 0,16 𝑑𝑜𝑛𝑐 16%

Une fois sur les deux essais ? 

Quelle est la probabilité qu’il ne marque aucun point en deux essais ? 
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Loi BinomialeLoi Binomiale
Rappel

Admettons qu'un joueur de basket ait 60 % de chances de réussir 

un lancer franc.

𝑝 𝑓𝑎𝑖𝑙, 𝑓𝑎𝑖𝑙 =  1 − 𝑝 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 × 1 − 𝑝 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 = 0,40 × 0,40
= 0,16 𝑑𝑜𝑛𝑐 16%

Une fois sur les deux essais ? 

𝑝 success, fail + 𝑝 fail, sucess = 0,60 × 0,40 + 0,40 × 0,60 = 
0,48 donc 48% 

Quelle est la probabilité qu’il ne marque aucun point en deux essais ? 
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Loi BinomialeLoi Binomiale
Rappel

Admettons qu'un joueur de basket ait 60 % de chances de réussir 

un lancer franc.

𝑝 𝑓𝑎𝑖𝑙, 𝑓𝑎𝑖𝑙 =  1 − 𝑝 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 × 1 − 𝑝 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 = 0,40 × 0,40
= 0,16 𝑑𝑜𝑛𝑐 16%

Une fois sur les deux essais ? 

Deux fois sur les deux essais ? 

𝑝 success, fail + 𝑝 fail, sucess = 0,60 × 0,40 + 0,40 × 0,60 = 
0,48 donc 48% 

Quelle est la probabilité qu’il ne marque aucun point en deux essais ? 
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Loi BinomialeLoi Binomiale
Rappel

Admettons qu'un joueur de basket ait 60 % de chances de réussir 

un lancer franc.

Quelle est la probabilité qu’il ne marque aucun point en deux essais ? 

𝑝 𝑓𝑎𝑖𝑙, 𝑓𝑎𝑖𝑙 =  1 − 𝑝 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 × 1 − 𝑝 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 = 0,40 × 0,40
= 0,16 𝑑𝑜𝑛𝑐 16%

Une fois sur les deux essais ? 

Deux fois sur les deux essais ? 

𝑝 𝑠𝑢𝑐𝑒𝑠𝑠, 𝑠𝑢𝑐𝑐𝑒𝑠 = 𝑝 sucess × 𝑝 sucess = 0,60 × 0,60
= 0,36 𝑑𝑜𝑛𝑐 36%

𝑝 success, fail + 𝑝 fail, sucess = 0,60 × 0,40 + 0,40 × 0,60 = 
0,48 donc 48% 
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Loi Binomiale

Cas d’une étude sur les déterminants des troubles du sommeil chez les enfants de 2 à 3 ans

Je sais que le pourcentage d’enfants atteint de trouble du sommeil dans la 

population d’étude est 𝑝 = 0,17 ou 17%.

J’ai une taille d’échantillon de 𝑛 = 10 et un nombre de personnesdans mon 

échantillon qui ont ce trouble de 𝑘 = 4

La question que l’on se pose est : cet échantillon provient-il 

bien de la population étudiée ? 

Loi Binomiale
Rappel
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(Kruschke 2015, p. 72-97 & 123-141) 
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Loi Binomiale

Donc, quelle est la probabilité d’observer 4 malades dans un échantillon de 10 sujets pris au 

hasard, sachant que la prévalence de la maladie est de 17 % ?

(1) Soit cette probabilité est élevée, et dans ce cas, l’échantillon observé peut 

s’expliquer par une simple fluctuation aléatoire.

(2) Soit elle est faible et l’échantillon ne représente pas la population. 

Ce qu’on va chercher à faire c’est de comprendre par étapes :

(1) Quelle est la probabilité d’observer 𝑘 individus possédant une caractéristique donnée…

(2)  Dans un échantillon de 𝑛 individus

(3) Tirés dans une population où la proportion 𝑝 de la caractéristique est connue. 

Loi Binomiale
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(Kruschke 2015, p. 72-97 & 123-141) 
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Caractéristique = trouble du sommeil 𝒌 4

Taille d’échantillon 𝒏 10

Proportion de sujets porteurs de la 
caractéristique de la population 𝒑 0,17

Quelle est la probabilité de 𝒌 succès au bout de 

n tentatives sachant que la probabilité 𝒑 de 

gagner à chacune des tentatives. 

Pr(k) =
𝑛!

𝑘! 𝑛 − 𝑘 !
𝑝𝑘(1 − 𝑝)𝑛−𝑘

Pr 4 =
10!

4! 10 − 4 !
0,174(1 − 0,17)10−4= 0,057 = 5,7 %

Loi Binomiale
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(Kruschke 2015, p. 72-97 & 123-141 ; Myung 2003) 

Loi Binomiale
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Loi binomiale

Caractéristique = trouble du sommeil 𝒌 0

Taille d’échantillon 𝒏 10

Proportion de sujets porteurs de la 
caractéristique de la population 𝒑 0,17

Quelle est la probabilité de 𝒌 succès au bout de 

n tentatives sachant que la probabilité 𝒑 de 

gagner à chacune des tentatives. 

Pr(k) =
𝑛!

𝑘! 𝑛 − 𝑘 !
𝑝𝑘(1 − 𝑝)𝑛−𝑘

Pr 0 =
10!

0! 10 − 0 !
0,170(1 − 0,17)10−0= 0,155 = 15,5 %

Loi Binomiale
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(Kruschke 2015, p. 72-97 & 123-141 ; Myung 2003) 

Loi Binomiale
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Loi Binomiale – cumul des probabilités

Pr 0 =
10!

0! 10 − 0 !
0,170(1 − 0,17)10−0= 0,155 = 15,5 %

Pr 1 =
10!

1! 10 − 1 !
0,171(1 − 0,17)10−1= 0,318 = 31,8 %

Pr 2 =
10!

2! 10 − 2 !
0,172(1 − 0,17)10−2= 0,293 = 29,3 %

Pr 3 =
10!

3! 10 − 3 !
0,173(1 − 0,17)10−3= 0,160 = 16,6 %

Pr 4 =
10!

4! 10 − 4 !
0,174(1 − 0,17)10−4= 0,057 = 5,7 %

Pr 5 =
10!

5! 10 − 5 !
0,175(1 − 0,17)10−5= 0,014 = 1,4 %

Pr 10 =
10!

10! 10 − 10 !
0,1710(1 − 0,17)10−10= 0,00000002

= 0,000002 %

…

෍ 1 𝑑𝑜𝑛𝑐 100 %
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Loi binomialeLoi Binomiale
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(Kruschke 2015, p. 72-97 & 123-141 ; Myung 2003 ) 
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Loi Binomiale – cumul des probabilités

෍ 1 𝑑𝑜𝑛𝑐 100 %

 1 2 3  5    
 ,  

 , 5

 ,1 

 ,15
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 ,3 

 ,35

 ,  

nombre de  

 1 

P( )

Loi binomialeLoi Binomiale

Ceci est une fonction de densité. La distribution théorique 

que vous êtes sensé obtenir si vous échantillonnez un 

certain nombre de participant. Elle est très importante car 

c’est elle qui va nous permettre de comprendre ce qui se 

passe statistiquement en traçant une droite de régression.

Vous avez sans doute toutes et tous entendu parler de la 
régression linéaire. 

Ici ce serait une régression logistique binomiale puisque 
k ne peut prendre que deux modalités 0 ou 1. 
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Loi Binomiale – cumul des probabilités

෍ 1 𝑑𝑜𝑛𝑐 100 %

 1 2 3  5    
 ,  
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Loi binomialeLoi Binomiale

Ici ce serait une régression logistique binomiale puisque 
k ne peut prendre que deux modalités 0 ou 1. 
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Loi Binomiale – cumul des probabilitésLoi binomialeLoi Binomiale

 1 2 3  5    
 ,  

 , 5
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 1 

P( )

En traçant cette droite, nous pouvons 

comprendre la relation qui existe entre deux 

variables, qu’il s’agisse de deux variables 

quantitatives ou d’une variable quantitative 

et d’une variable qualitative (par exemple : 

groupe contrôle vs groupe test)

C’est le même principe que la régression 

linéaire mais avec X pouvant prendre que 

deux valeurs 0 ou 1.  
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Loi Binomiale – cumul des probabilitésLoi binomialeLoi Binomiale

Pour placer la droite correctement vis-à-vis de cette fonction de densité il existe deux méthodes. 

Les moindres carrées dans le cas d’un régression linéaire classique. Cela suppose que 

nous attendons à ce que les résidus de la pente (la fonction de densité) suivent une loi 

normale et la variance de ces derniers soit homogènes comme illustré ici. 

Variance homogène

Résidus normaux

Pour tous les autres cas nous appliquons le 

maximum de vraisemblance. 
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Loi binomialeVraisemblance

Appliquons maintenant le maximum 

de vraisemblance à la loi binomiale 

Maximum de vraisemblance

© 2025 Romain di Stasi.
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Loi binomialeVraisemblance Maximum de vraisemblance
Rappel

Likelihood
Prior Posterior

Vraisemblance

P 𝐴 𝐵 =
P 𝐵 𝐴  . 𝑃(𝐴)

𝑃(𝐵)

La probabilité de nos données 

sachant notre ou nos hypothèses

Donc

© 2025 Romain di Stasi.
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Maximum de vraisemblance

La vraisemblance est une fonction notée : 

𝐿 𝜃 = 𝑃 𝑑𝑜𝑛𝑛é𝑒𝑠 𝜃)

Le paramètre 𝜃 c’est le ou les paramètres inconnus que l’on cherche à estimer, il peut suivre un 

ensemble de loi de probabilité comme la loi normale, la loi de poisson (qui ont tous deux plusieurs 

paramètres) mais ici nous commencerons par loi de Binomiale qui n’en possède qu’un 𝜃 = 𝑝, dont 𝑝 

est une probabilité fixe. 

Ensuite, nous avons ce que nous avons mesuré qui nous l’espérons suit la même loi, indépendante et 

identiquement distribuée notée 𝑥1, 𝑥2, … , 𝑥𝑛 , elle suivront une loi de probabilité 𝑓(𝑥 | 𝜃)

La fonction de vraisemblance est donc :

Probabilité d’observer les données si le paramètre du 

modèle est 𝜃 

𝐿 𝜃 = ෑ

𝑖=1

𝑛

𝑓 𝑥𝑖  𝜃)

Fonction de densité dans laquelle nous avons 

la probabilité d’observer 𝑥𝑖 selon 𝜃 

Le produit de toutes les probabilités en 

supposant qu’elles soient indépendantes

Loi binomialeVraisemblance

Loi Binomiale
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Maximum de vraisemblance

On cherche ensuite le maximum de vraisemblance (MLE)

L’idée ici est de trouver la valeur de 𝜃 qui rend les données les plus probables. Formellement ça 

donne: 

𝐿 𝜃 = ෑ

𝑖=1

𝑛

𝑓 𝑥𝑖  𝜃)

arg max 𝐿(𝜃)

L
( 
)

 ,  

 5 1 

 , 5

 ,1 

 ,15

 ,2 

x 
i

Supposons que je lance une pièce 10 fois, donc 𝑛 = 10 et que j’observe 𝑘 = 7 faces. Je veux 

estimer 𝑝, la probabilité de tomber sur face. La vraisemblance de la loi binomiale est : 

𝐿 𝑝 = 𝑃 𝑘 𝑓𝑎𝑐𝑒 𝑝) =
10
7

𝑝7(1 − 𝑝)3

Le maximum de vraisemblance correspond au p qui maximise cette expression

Ƹ𝑝𝑀𝐿𝐸 =
7

10
= 0,7

𝑓 𝑦 𝑝 =
𝑛
𝑦 𝑝𝑦(1 − 𝑝)𝑛−𝑦Puisque la loi binomial c’est 

Vraisemblance

Loi Binomiale

Exemple

Rappel
Fonction de densité
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Maximum de vraisemblanceVraisemblance

Loi Binomiale

L
( 
)

 ,  

 5 1 

 , 5

 ,1 

 ,15

 ,2 

x 
i

L
( 
)

 ,  

 5 1 

 , 5

 ,1 

 ,15

 ,2 

x 
i

𝐿 𝜃 = ෑ

𝑖=1

𝑛

𝑓 𝑥𝑖  𝜃)

Cette méthode peut s’appliquer à tous les type de distributions
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Maximum de vraisemblance

dans une régression

Concrètement que fait le maximum de vraisemblance par étapes :

Etape 1: Ce que l’on cherche 

On a des points dispersés sur un graphique (valeurs de 𝑥 et 𝑦) — par exemple, taille de l’enfant et nombre de 

mots qu’il connaît. On veut trouver une droite qui colle le mieux à ces points.

Etape 2: On essaye des droites

Certaines passent trop en dessous ou au-dessus des points, d’autres passent pile au 

bon endroit : c’est la meilleure droite.

Vraisemblance

© 2025 Romain di Stasi.
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Maximum de vraisemblance

dans une régression

Concrètement que fait le maximum de vraisemblance par étapes :

Etape 3: Une idée de "chance"

Pour chaque droite, on peut se demander : “À quel point cette droite rend mes données 

probables ?”

Autrement dit : si cette droite était la vraie, à quel point serait-ce normal d’observer ces points 

aussi proches (ou éloignés) ?

Au final la méthode du maximum de vraisemblance

C’est une méthode qui :

Teste plein de droites différentes.

Mesure pour chacune la "probabilité d’avoir obtenu ces données".

Choisit la droite qui rend les données les plus probables.

Vraisemblance

© 2025 Romain di Stasi.
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Le maximum de vraisemblance : méthode couramment utilisée pour estimer les paramètres d’une 

régression linéaire généralisée (mais pas exclusivement). Elle consiste à ajuster les données en 

choisissant la loi de probabilité appropriée pour les résidus (e.g., binomiale, Poisson, Gamma, etc.).

Si l’on adopte une approche plus proche de la philosophie bayésienne, puisque le maximum 

de vraisemblance restreint l’espace dans lequel notre modèle va chercher les paramètres à 

l’image du prior. Par exemple, un temps de réaction de 1000 secondes n’est pas réaliste ; 

de même, une loi Gamma n’ira pas explorer des valeurs aberrantes de ce type.

L’approche bayésienne pousse cette logique encore plus loin : au lieu de chercher une 

seule “meilleure valeur” des paramètres, elle considère toutes les valeurs possibles et 

indique leur degré de plausibilité (en combinant les données et nos croyances préalables, 

appelées priors). Comme il est souvent trop compliqué de calculer cette distribution 

directement, on utilise des simulations par chaînes de Markov (MCMC) voir ici pour un 

exemple, qui permettent d’explorer progressivement l’espace des paramètres. On obtient 

ainsi non pas un seul chiffre, mais une distribution complète de possibilités.

© 2025 Romain di Stasi.
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L'idée clé : le futur ne dépend pas du présent, mais du chemin qui l'y a mené.

Un exemple très simple la météo : on imagine un cas très simple de météo ou il n’y a que 

deux possibilités :

On dit qu’aujourd’hui il fait soleil. Demain selon notre modèle il y a donc 70 % de chance qu’il fasse 

beau et 30 % de chance qu’il pleuve. Et si aujourd’hui il pleut alors : il y a 60 % de chance qu’il 

continue de pleuvoir et 40 % de chance que le soleil revienne.  

Ce modèle est un Chaîne de Markov: 

Tu passes d’un état (temps) à un autre

Avec certaines probabilités de transition

Et à chaque étape, seul l’état actuel compte pour prédire le suivant

Notion de Chaîne de Markov

© 2025 Romain di Stasi.
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Imagine que tu jettes un dé ou que tu avances sur un jeu de plateau : Ton 

prochain mouvement dépend de là où tu es maintenant. Tu n’as pas besoin 

de te rappeler comment tu es arrivé là.

Une chaîne de Markov, c’est comme un jeu

Une chaîne de Markov, c’est une suite d’étapes où chaque nouvelle étape 

dépend uniquement de la précédente, pas de toute l’histoire. En 

statistiques, on l’utilise pour simuler plein de scénarios possibles et explorer 

les valeurs probables d’un paramètre.

Notion de Chaîne de Markov

© 2025 Romain di Stasi.



64

Critique de la p-value et Facteur BayésienVraisemblance
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Je suis enquêteur et je veux savoir combien j’ai de personnes dopées chez mes 1  premiers 

coureurs. 

Je sais que l’un des principaux symptômes de dopages est un taux d’hématocrite (i.e., quantité de 

globules rouges dans le sang) particulièrement élevé – 50% 

8 sur les 19 cyclistes sont testés avec un taux élevé.

Donc 42 % de mon échantillon 

On sait que dans la population générale seul 13 % des 

sujets ont un hématocrite

L’idées est de calculé la probabilité qu’on 

ait 𝑃𝑟𝑜𝑝𝑜𝑏𝑠𝑒𝑟𝑣é = 42 % alors que 𝑃𝑟𝑜𝑝𝑎𝑡𝑡𝑒𝑛𝑑𝑢𝑒 = 13 % 

Test du chi deux p-valueOu 

Loi binomiale
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Critique de la p-value et Facteur BayésienVraisemblance
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8 sur les 19 cyclistes sont testés avec un taux élevé.

Donc 42 % de mon échantillon 

On sait que dans la population générale seul 13 % des sujets 

ont un hématocrite

L’idée est de calculer la probabilité qu’on 

ait 𝑃𝑟𝑜𝑝𝑜𝑏𝑠𝑒𝑟𝑣é = 42 % alors que 𝑃𝑟𝑜𝑝𝑎𝑡𝑡𝑒𝑛𝑑𝑢𝑒 = 13 % 

𝐻0 ∶ 𝑃𝑟𝑜𝑝𝑜𝑏𝑠𝑒𝑟𝑣𝑒 = 𝑃𝑟𝑜𝑝𝑎𝑡𝑡𝑒𝑛𝑑𝑢

𝐻1 ∶ 𝑃𝑟𝑜𝑝𝑜𝑏𝑠𝑒𝑟𝑣𝑒 > 𝑃𝑟𝑜𝑝𝑎𝑡𝑡𝑒𝑛𝑑𝑢

𝑝 = 0,002

Un séjour à la montagne

Mais ce n’est qu’un symptôme. Il y a d'autres raisons pouvant 

expliquer un taux élevé d’hématocrite.

© 2025 Romain di Stasi.
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Critique de la p-value et Facteur BayésienVraisemblance
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8 sur les 19 cyclistes sont testés avec un taux élevé (> 50%).

On trouve une étude qui montre que lorsque les individus consomment un produit X, 50% des 

participants ayant consommé ce produit dopant montent à 50% 

On peut donc réaliser un autre test en évaluant le 

pourcentage de personnes ayant un taux 

d’hématocrite supérieur à 50 % par rapport à une 

probabilité attendue de 50 % si 100 % des 19 coureurs 

avait consommé un produit dopant. 

𝐻0 ∶ 𝑃𝑟𝑜𝑝𝑜𝑏𝑠𝑒𝑟𝑣𝑒 = 𝑃𝑟𝑜𝑝𝑎𝑡𝑡𝑒𝑛𝑑𝑢

𝐻1 ∶ 𝑃𝑟𝑜𝑝𝑜𝑏𝑠𝑒𝑟𝑣𝑒 > 𝑃𝑟𝑜𝑝𝑎𝑡𝑡𝑒𝑛𝑑𝑢

𝑝 = 0,32 𝑛𝑠

Ici on aurait 𝑃𝑟𝑜𝑝𝑜𝑏𝑠𝑒𝑟𝑣é = 42 % alors que 
𝑃𝑟𝑜𝑝𝑎𝑡𝑡𝑒𝑛𝑑𝑢𝑒 = 50 % 

Ici on est très ennuyé puisque on ne peux ni accepter 𝐻0 ni la rejeter… 
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Critique de la p-value et Facteur BayésienVraisemblance
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Pour résumer on a deux études

La première montre un résultat significatif mais n’est pas claire dans H1, on ne sait pas 

combien sont dopés, on a aucune probabilité de trouver un individu dopé dans la population

La seconde ne permet pas de conclure… 

Si on part de l’hypothèse que la population de cycliste étudiée est une population dopée 

en utilisant une approche bayésienne basée sur la vraisemblance on aura… 

𝑉 𝐻𝑑𝑜𝑝𝑎𝑔𝑒 = Pr 𝐷 𝐻𝑑𝑜𝑝𝑎𝑔𝑒) = Pr(8/19) 𝑠𝑖 𝑃 = 0,50

Puisque pour rappel la formule de la loi binomiale est : 

Pr 𝑋 = 𝐾 =
𝑛!

𝑘! 𝑛 − 𝑘 !
𝑝𝑘(1 − 𝑃)𝑛−𝑘

𝑛 = 19 𝑘 = 8 𝑃 = 0,5
𝑉 𝐻𝑑𝑜𝑝𝑎𝑔𝑒 = 0,144

Attention la vraisemblance n’est pas un probabilité et ne s’interprète sûrement pas comme la 

probabilité d’observer cet échantillon si mon hypothèse est vraie. Elle n’est pas suffisante seule. 
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Critique de la p-value et Facteur BayésienVraisemblance
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On peut faire l’hypothèse inverse en mesurant la vraisemblance des données selon l’hypothèse 

que mon échantillon appartienne à ma population normale. 

𝑉 𝐻𝑐𝑙𝑒𝑎𝑛 = Pr 𝐷 𝐻𝑐𝑙𝑒𝑎𝑛) = Pr(8/19) 𝑠𝑖 𝑃 = 0,13

𝑉 𝐻𝑐𝑙𝑒𝑎𝑛 = 0,00133

On voit bien que nos deux vraisemblances 

𝑉 𝐻𝑑𝑜𝑝𝑎𝑔𝑒 = 0,144

𝑉 𝐻𝑐𝑙𝑒𝑎𝑛 = 0,00133

𝑉 𝐻𝑑𝑜𝑝𝑎𝑔𝑒 = 0,144 

𝑉 𝐻𝑐𝑙𝑒𝑎𝑛 = 0,00133 
= 108,27 ≈ 108

Cela signifie que maintenant qu’on a recueilli les données la vraisemblance de l’hypothèse 

dopage (𝐻𝑑𝑜𝑝𝑎𝑔𝑒) est 1   fois plus forte que celle d’une absence de dopage 𝐻𝑐𝑙𝑒𝑎𝑛 . 

C'est ce qu'on appelle le Facteur de Bayes : plus il est élevé, plus l’hypothèse est 
vraisemblable. 

© 2025 Romain di Stasi.

https://www.youtube.com/watch?v=5hN_plbtPjw&t=31s


69

Critique de la p-value et Facteur BayésienVraisemblance

Juste pour être sûr : si j’ai un facteur de Bayes de 2, que cela signifie-t-il ?

P D 𝐻1)

P D 𝐻2)
= 2 Le résultat est deux fois plus vraisemblable sous 𝐻1

© 2025 Romain di Stasi.
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