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€@ Pour comprendre ce que sont les statistiques bayésiennes, il faut comprendre :

— Le théoréme de Bayes

— La loi binomiale

— Une vraisemblance et le maximum de vraisemblance

Mais pas de panique, nous allons revenir sur ces aspects ici.
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Le theoreme de Bayes

€@ Contrairement aux statistiques fréquentistes, les statistiques bayésiennes ne
suggerent pas que la recherche part de zéro.

— Tout part du mathématicien Britannique Thomas Bayes (1702-1761)
publie a titre posthume par Richard Pr
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Le theoreme de Bayes - une breve histoire

O O O P(B) Thomas Bayes montre ceci...

Cela revient au méme que faire ’inverse :

Donc on obtient ’égalité suivante :

© Romain di Stasi, inspiré par la chaine d’Hygiene mentale

Le probléeme, c’est qu’écrit ainsi, on ne peut pas calculer la probabilité d’un événement en connaissant sa cause
(Uautre probabilité). En effet, si ’'on considére que B est la cause d’une partie de A, alors pour pouvoir estimer la
probabilité de A étant donné B, il est indispensable de connaitre la probabilité de B.
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https://www.youtube.com/watch?v=x-2uVNze56s

Le theéoreme de Bayes - une breve histoire

Thomas Bayes lui-méme ne s’y est pas intéressé. C'est son ami Richard Price qui a publié ses travaux apres sa
mort.

Puis Pierre-Simon Laplace a découvert l'intéréet de [’égalité mise en évidence par Thomas Bayes qu’il a
reformulée ainsi:

Appelé probabilité
inverse

Pourquoi cela change toute notre approche ? Ici il
faut revenir aux « vraisemblance » et a la maniere
dont les statistiques fréquentistes fonctionnent
pour les differencier de l’approche bayésienne.

LA PROBABILITE DES CAUSES

Te ot e
®-Simon Lap\e®
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Le theoreme de Bayes - une breve histoire

Frequentiste

Vraisemblance des résultats x
dans le cadre d’une hypothese H

Quelle est la probabilité que j’aie un
résultat x dans le cas ou j’ai une hypothese
H. C’est « la vraisemblance du résultat ».

C’est tout ou rien, soit je conserve, soit je
rejette Ho.

© 2025 Romain di Stasi.

Bayesiens

Plausibilité de ’hypothese H
au vu des résultats x

Quelle est la probabilité que mon hypothese
H soit vraie au vu des résultats obtenus x,
c’est la plausibilité de mes hypotheses.

Elles permettent d’évaluer les niveaux de
crédibilités de chaque hypothese.



Le theoreme de Bayes - une breve histoire

Rappelez vous ’exemple de I’OVNI

&
|—" i

J’entends un bruit de grincement de parquet, c’est a cause de

Contrairement aux fréequentistes,
les bayésiens n’eliminent pas les
hypotheses : ils les évaluent.

\4

H1: 2 % H2: 32 % H3 :66 %
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Le theoreme de Bayes - une breve histoire

Vraisemblance des résultats x
dans le cadre d’une hypothese H

Ronald Fisher a rejeté le concept de

probabilité inverse pour deux raisons:
Soit HO

Si
(1) Trop complexe a calculer
Alors on rejette  HO,
”’hypothese doit etre fausse 2) Trop subjectif

Si

La méthode fréquentiste

Alors on doit retenir HO
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Le theoreme de Bayes - une breve histoire

Ronald Fisher a rejeté le concept de probabilité inverse pour deux raisons:

(1) Trop complexe a calculer (2) Trop subjective

=X

Prior

/

Il faut avoir un a priori sur [’hypothese
(prédictions) avant méme de ’avoir testée.

Il faut calculer les vraisemblance
de chaque hypothese...

==

Fréequentiste
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Le theoreme de Bayes - une breve histoire

Ronald Fisher a rejeté le concept de probabilité inverse pour deux raisons:

(1) Trop complexe a calculer
Cette difficulté est avant tout mathématique, mais le concept reste simple.

Cela n’est plus un probleme, maintenant que des ordinateurs peuvent réaliser ces
calculs en quelques millioniemes de seconde.

(2) Trop subjectif

Les statistiques fréquentistes ne le sont pas moins puisqu’elles reposent sur des choix.

© 2025 Romain di Stasi.
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Le theoreme de Bayes - une breve histoire

Ronald Fisher a rejeté le concept de probabilité inverse pour deux raisons:

(2) Trop subjectif

Les statistiques fréquentistes ne sont pas moins subjectives, car elles reposent aussi sur des choix.

Politique
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© d'Ockam

maisils ne transparaissent pas ...

En fréquentiste, cette subjectivité est juste masquée artificiellement !

- Les statistiques bayésiennes ont le mérite d’assumer cette subjectivité !
© 2025 Romain di Stasi.
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https://www.youtube.com/watch?v=x-2uVNze56s

Le theéoreme de Bayes - une breve histoire

Ronald Fisher a rejeté le concept de probabilité inverse pour deux raisons:
(2) Trop subjectif
Mais... les statistiques bayésiennes sont parmi les plus proches de

l’approche hypothético-déductive, puisqu’elles traduisent directement ce
qu’on appelle la falsification de Popper.

est synonyme de pas d’effet
et on ne peut jamais ’accepter.

En Bayésien, on ne se contente pas de tester une hypothese nulle Ho comme en
fréquentiste, mais on compare explicitement plusieurs hypothéses ou modeles
concurrents (Ho et H1) a l'aide du facteur bayésien (BF). Cette logique rend plus
visible l’idée poppérienne de falsification, puisque chaque hypothese est
réellement mise a l’épreuve par rapport a une autre. Il est donc tout a fait possible
de conclure qu’il y a davantage de soutien pour Ho, plutot que de la rejeter

systématiquement.
© 2025 Romain di Stasi.

12



Le theéoreme de Bayes - une breve histoire

Pour rappel, la falsification selon Popper repose sur [’idée que, pour qu’une discipline soit considérée
comme scientifique, ses hypotheses doivent étre « falsifiables ». Il doit étre possible de vérifier
empiriquement si une hypothéese peut étre réfutée ou non.

Il est impossible de montrer empiriquement que Dieu existe ou n’existe pas,
c’est pourquoi la religion n’est pas une science.

Pour reprendre |’exemple des moutons du cours précedent.

Hypothéese 2 - presque tous les moutons sont blancs
ou noirs mais il en existe des oranges

13
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Le theéoreme de Bayes - une breve histoire

Pour reprendre ’exemple des moutons du cours préecedent.

Hypothese 2 - presque tous les moutons sont blancs
ou noirs mais il en existe des oranges

Croyance A posteriori (Posterior) - presque tous
les moutons sont blancs ou noirs mais il en existe
des oranges.

Refute Qui deviendra le Prior de l’étude 14
© 2025 Romain di Stasi. suivante.




Statistiques Fréquentistes vs. bayésiennes, une
illustration dans un jeu de role.

J’ai le D12, quelles sont les chances que j’aie

/= ﬁa chaque résultat possible ?
D10 D12 D20

a 12 faces numérotés donc 12 résultats possibles ?
100 %

12

D4 D8

= 8,3 % pour chaque face.

Si les faces ne sont pas équiprobables, on peut 4
effectuer 10 000 lancers et établir une table de 8,3% | _

distribution empirique.
\ 4'

v

12 3 4 5 6 7 8 9 10 11 12

Cela est vrai pour n’importe quel type de dés.

15
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Statistiques Fréquentistes vs. bayésiennes, une
illustration dans un jeu de role.

D4 D8

L’objectif sera de répondre a la question suivante :
Le maitre de jeu lance, il fait un 7. Est-ce que c’est un résultat extraordinaire ?

Le statisticien fréquentiste dira que cela dépend de ce qu’on appelle un résultat extraordinaire.

Il faudra définir un seuil pour différencier ’ordinaire de ’extraordinaire. Si on considere un seuil
a1 % (pseyi;) €t que ma proba dans un D12 est de 8,3 %. Non ce n’est pas un résultat
extraordinaire. Pas besoin de remettre en doute le maitre de jeu.

Toutefois s’il tire 10 fois 7, la je pourrais me poser la question puisque la si j’ai 1/12 la probabilité
1

1210

de base qui est répétée 10 fois nous avons ~ 10711 ce qui deca de 1 % (popyy)-

© 2025 Romain di Stasi.
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Statistiques Fréquentistes vs. bayésiennes, une
illustration dans un jeu de role.

D4 D8

L’objectif sera de répondre a la question suivante :
Le maitre de jeu lance, il fait un 7. Est-ce que c’est un résultat extraordinaire ?

Le statisticien bayésien se demandera : quel dé a été lancé ?

Ici, je ne cherche pas les chances d’obtenir ce résultat directement, mais davantage
quel est le dé qui a été lancé.

17
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Statistiques Fréquentistes vs. bayésiennes, une
illustration dans un jeu de role.

L’objectif sera de répondre a la question suivante :
Le maitre de jeu lance, il fait un 7. Est-ce que c’est un résultat extraordinaire ?

Le statisticien bayésien se demandera : quel dé a été lancé ?

Ici, je ne cherche pas les chances d’obtenir ce résultat directement, mais davantage quel

est le dé qui a été lancé.
2 &
X @ @
D10 D12 D20

s J s s s s

25% 25% 25 % 25 % 18
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Statistiques Fréquentistes vs. bayésiennes, une
illustration dans un jeu de role.

’objectif sera de répondre a la question suivante :

Le maitre de jeu lance, il fait un 7. Est-ce que c’est un résultat extraordinaire ?

Le statisticien bayésien se demandera : quel dé a été lancé ?

Ici, je ne cherche pas les chances d’obtenir ce résultat directement, mais

davantage quel est le dé qui a été lancé.
B &
HKEORE S
D4 D6 D10 D12 D20

) ) ) ) ) )

25% 25% 25 % 25 %

D’accord, mais si nous devions parier, quel est le dé ayant la plus forte probabilité d’avoir été utilisé ?

L’approche frequentiste considere que les chances sont égales, ce qui est une erreur... 19
© 2025 Romain di Stasi.
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Statistiques Fréquentistes vs. bayésiennes, une
illustration dans un jeu de role.

Différents dés sont les hypotheses pour modéliser le résultat obtenu.

H1 H2 H3 H4 H5 Hé6

20



Statistique bayésienne - et lance de des

© 2025 Romain di Stasi.
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Ma croyance A priori (prior)'  Vraisemblance de mes résultats ' Ma croyance A posteriori
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https://www.youtube.com/watch?v=x-2uVNze56s&t=900s

Statistique bayésienne - et lance de des

© 2025 Romain di Stasi.
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10 %

Vraisemblance de mes résultats

P(H3 |x) =

P(x)
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Statistique bayésienne - et lance de des

© 2025 Romain di Stasi.

H1
- OB

8

o @

Le P(x)de cette équation est la
réponses que les statisticiens

| fréquentistes cherchent, mais ils

vont systématiquement s‘arréter la.

z P(H3 |x) = P(x |H3).P(H3)

Surface h P(x)
(16,6 x 12,5) : 100 = 2,062 %

H4 Surface
(16,6 x 10) : 100 = 1,66 %
/=X > .
I = ZSurfaceS
pa@ Surface
H5 @ (16,6 % 8,4) : 100 = 1,39 % lci Cest...

2,062+ 1,66+ 1,39+0,83=5,942 %
Surface
(16,6 X 5) : 100 = 0,83 %

SECE E ARAEE

. @

. . . | p
Ma croyance A priori (prior) -~ Vraisemblance de mes résultats
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Statistique bayésienne - et lance de des

H3 = 34,70 %

Surface
(16,6 x 12,5) : 100 = 2,062 %

Surface
(16,6 x10) : 100 = 1,66 %

H4 =27,93 %

Surface
(16,6 x8,4):100 =1,39%

H5 = 23,39 %

Surface
(16,6 x 5) : 100 = 0,83 %

SECE E ARAEE

. . . | p
Ma croyance A priori (prior) -~ Vraisemblance de mes résultats

H6 = 13,97 %

2,062

5,942
= 34,70 %

X 100

1,66

X
5,942 100
= 27,93 %

1,39

X1
5,942 00
= 23,39 %

)

X
5,942 100
= 13,97 %

24
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Statistique bayésienne - et lance de des

Puis il y aura une réactualisation des connaissance a
chaque lancer. Si je relance un 7, on refait le calcul.

Nouvelle croyance nouveau A priori 25

apres le premier lancer (prior)
© 2025 Romain di Stasi.




Statistique bayésienne - et lance de des

© 2025 Romain di Stasi.

"
- OB
"
H4

o @ L .

Nouvelle croyance nouveau A priori -~ Ma croyance A posteriori




Statistique bayésienne - et lance de des

© 2025 Romain di Stasi. : P(x) =434+2,79+196+ 1,17

= 10,26 %
H1 Attention, je l'exprime
2

ici en pourcentage,
| |
/8\\

mais ce n'est pas
H3 (34,70 x12,5) : 100 = 4,34 %

H3 = 42,30 % obligatoire.

27

| | H4 =27,19 %
H4 ng (27,93 x10) : 100 = 2,79 %
| |
= >
H5 ﬂ@@ (23,39 x8,4) : 100 = 1,96 % H5 =19,10 %
\ !
| |
AN .
H6 m | (13,97 x8,4): 100 =1,17 % Hé6 = 11,40 %
XF :

|
Nouvelle croyance nouveau a priori - Ma croyance a posteriori
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Le theoreme de Bayes

€ Un théoréme que nous utilisons tous les jours sans le savoir.

C’est un singe

C’est un agent secret

—— La question que poserait le théoreme de Bayes...

Quelle est la probabilité qu’il s’agisse d’un
agent secret sachant qu’il a une téte de singe
et une banane ?

— Si on regroupait les indices « banane » et
« téte de singe » en une seul catégorie ca
donnerait...

28



Le theoreme de Bayes

© 2025 Romain di Stasi.

/

Probabilité qu’il s’agisse d’un singe alors qu’il ressemble a James Bond

Mettons que nous ayons une chance sur dix de croiser un singe, puisque nous sommes a proximité
d’un cirque ou d’un zoo. On a donc P(S) =0,1, ou S désigne l’événement "c’est un singe".
Supposons également que, si c’est un singe, il y a 95% de chances d’observer cette image :
P(S|A) = 0,95. P(S) est la probabilité inverse de P(S) donc P(S) = 1 - P(S). Enfin il faut supposer
également que la probabilité d’avoir cette photo ne s’agissant pas d’un singe est de 1 % donc
P(A|S) = 0,01. Cela donne...

29




Le theoreme de Bayes

© 2025 Romain di Stasi.
Un autre exemple...

‘ Dans un cas de test de dépistage d’une maladie

Tu es médecin et tu veux estimer la probabilité qu’un patient soit malade, sachant que son
test est positif.

Nous avons 3 probabilités :

—— Mal = « le patient a la maladie »

—> Mal = « le patient n’a pas la maladie »

—— Pos = le test est positif

Nous avons 3 données connues (priors) :

— P(Mal) =prévalence de la maladie, 10% donc 0,1

—  Spécificité du test P(P_os |M_al) = 0,05 puisqu’il y a 5% de chance d’un faux positif

—— Sensibilité du test P(Pos |Mal) = 0,99 puisque le test détecte 99% des cas réel

30



Le theoreme de Bayes

© 2025 Romain di Stasi.
Un autre exemple...

‘ Dans un cas de test de dépistage d’une maladie

Quelle est la probabilité que le patient soit malade sachant qu’il a eu un test positif ?

Ainsi, méme si le test est fiable a 99 % en sensibilité et a 95 % en spécificité, si la maladie est
rare (1 %), alors un test positif ne signifie pas nécessairement que la personne est malade.

31



La notion de vraisemblance

‘ Dans cet exemple de dépistage de la maladie, il faut bien comprendre la notion de vraisemblance...

Ici nous avons mesuré la probabilité que le test soit positif sachant que P(4), la prévalence
de la maladie est égale a 0,1...

La vraisemblance correspond a la probabilité d’observer certaines données a supposer qu’une hypothese
soit vraie. Nous [’avons déja vue a travers ’exemple des dés. Par exemple, si je pense qu’il y a 40 % de
chances que le dé utilisé soit un D10, la vraisemblance est la probabilité que ce dé ait produit un 7 -
autrement dit : quelle est la compatibilité entre cette hypothese et mon observation.

Dans le contexte du dépistage, la vraisemblance correspond a la probabilité que le test soit
positif si la personne est réellement malade.

A Ne pas confondre vraisemblance et croyance A posteriori

Vraisemblance Croyance

A posteriori

32
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Vraisemblance vs. Probabilité a posteriori

Cas du depistage

Terme Représente quoi Example dans le test

Croyance A priori Ce que je pense avant de P(Mal) = 1%

(prior) voir le test A Posterior
. Probabilité d’observer le
Vraisemblance test positif si la personne P(Pos)
(Likelihood) P P R Likelihood
est malade

Croyance A Ce que je crois apres avoir /

posteriori quel P P(Mal) =1

. vu le test
(posterior)
33
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Vraisemblance vs. Probabilité a posteriori

Cas des de

Terme

Représente quoi

Example dans le test

Croyance A priori
(prior)

Ce que je pense avoir
comme résultat

P(dé = D10) = 40%

Vraisemblance

Probabilité d’obtenir le
résultat si ’hypothése est

(Likelihood) i
vraie
Croyance A Ce que je crois aprés avoir /
posteriori que] P P (Dé=D10)
' vu le test
(posterior)

\A Posterior

Likelihood

’ La croyance A posteriori (ou posterior) représente la combinaison de l’information qui provient
de l’observation des données et nos croyances A priori (prior)

© 2025 Romain di Stasi.
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Vraisemblance vs. Probabilité a posterio‘ii

H3 =41,99 %

(34,66 x12,4) : 100 = 4,30 %

(27,96 x 10) : 100 = 2,80 %

H4 = 27,38 %

(23,41 x8,4):100=197%

H5 =19,26 %

(13,98 x8,4):100=1,17%

H6 = 11,44 %

Posterior

appel

35



Vraisemblance vs. Probabilite a posterio‘ii
: : appel

I |
H3 =41,99 %
I I
(34,66 x 12,4) : 100 = 4,30 %
I I
| 1 H4 = 27,38 %
(27,96 x 10) : 100 = 2,80 %
I |
(23,41 x8,4) : 100 = 1,97 % H5 = 19,26 %
I |
I
I (13,98 x 8,4) : 100 = 1,17 % Hé6 = 11.44 %
I 2
) ] [
A Prior Posterior

Vraisemblance

|—' La probabilité de nos données

sachant notre ou nos hypotheses

Prior Posterior

Donc

)

36
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Prior et loi binomiale

Q Afin de bien comprendre |’approche bayésienne et la vraisemblance il est assez intéressant de
considérer une loi simple, la loi binomiale, pour plusieurs raisons.

— Elle modélise des situations trés courantes : succes/échec répétés.

— Elle joue un role central en tant que vraisemblance dans ’approche
bayésienne.

Puisque...

» Cette loi se base sur une probabilité a priori comme dans
l’équation de Bayes

— Elle est associée a une loi conjuguée simple : la loi béta.

Elle est donc utilisable...

» Dans de nombreux cas qui nous intéressent en psychologie et
neuroscience (e.g., différence de pourcentages).
37
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Loi Binomiale

© 2025 Romain di Stasi.

€ La loi binomiale consiste en la probabilité de constater une fréquence observée en fonction
d’une fréquence attendue.

Cette derniere est binaire : cela peut se traduire par le fait d’avoir réussi on non son
exam, d’étre malade ou non, marquer a un panier de basket ou non, etc.

€ Admettons qu'un joueur de basket ait 60 % de chances de réussir
un lancer franc.

— Quelle est la probabilité qu’il ne marque aucun point en
deux essais ?

—— Une fois sur les deux essais ?

—> Deux fois sur les deux essais ?

Rappel

JawLid ap a41} 9idwaxa 0

38


https://www.youtube.com/watch?v=6YzrVUVO9M0&t=173s

Loi Binomiale

© 2025 Romain di Stasi.

¥ Admettons qu'un joueur de basket ait 60 % de chances de réussir
un lancer franc.

— Quelle est la probabilité qu’il ne marque aucun point en deux essais ?

Rappel

JawLid ap a41} 9idwaxa 0

39


https://www.youtube.com/watch?v=6YzrVUVO9M0&t=173s

Loi Binomiale
Rappel

© 2025 Romain di Stasi.

¥ Admettons qu'un joueur de basket ait 60 % de chances de réussir
un lancer franc.

— Quelle est la probabilité qu’il ne marque aucun point en deux essais ?

p(fail, fail) = 1 — p(success) X 1 — p(success) = 0,40 x 0,40
= 0,16 donc 16%

dwaxa o

J3UWLd ap 2413 9)

NEIFIFIF)

VEIEIEF
FIEIEIEIE
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https://www.youtube.com/watch?v=6YzrVUVO9M0&t=173s

Loi Binomiale
Rappel

© 2025 Romain di Stasi.

¥ Admettons qu'un joueur de basket ait 60 % de chances de réussir
un lancer franc.

— Quelle est la probabilité qu’il ne marque aucun point en deux essais ?

p(fail, fail) = 1 — p(success) X 1 — p(success) = 0,40 x 0,40
= 0,16 donc 16%

— Une fois sur les deux essais ?

dwaxa o

J3UWLd ap 2413 9)

NEIFIFIF)

VEIEIEF
FIEIEIEIE
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https://www.youtube.com/watch?v=6YzrVUVO9M0&t=173s

© 2025 Romain di Stasi.

Loi Binomiale

¥ Admettons qu'un joueur de basket ait 60 % de chances de réussir

un lancer franc.

— Quelle est la probabilité qu’il ne marque aucun point en deux essais ?

p(fail, fail) = 1 — p(success) X 1 — p(success) = 0,40 x 0,40

= 0,16 donc 16%

— Une fois sur les deux essais ?

NEIFIE
WEIFIFE)

FIEIFIEE

k.
"d

Rappel

dwaxa o

J3UWLd ap 2413 9)

42
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https://www.youtube.com/watch?v=6YzrVUVO9M0&t=173s
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Loi Binomiale

¥ Admettons qu'un joueur de basket ait 60 % de chances de réussir

un lancer franc.

— Quelle est la probabilité qu’il ne marque aucun point en deux essais ?

p(fail, fail) = 1 — p(success) X 1 — p(success) = 0,40 x 0,40

= 0,16 donc 16%

— Une fois sur les deux essais ?

— Deux fois sur les deux essais ?
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https://www.youtube.com/watch?v=6YzrVUVO9M0&t=173s

Loi Binomiale
© 2025 Romain di Stasi. Ra ppEI

¥ Admettons qu'un joueur de basket ait 60 % de chances de réussir
un lancer franc.

— Quelle est la probabilité qu’il ne marque aucun point en deux essais ?

p(fail, fail) = 1 — p(success) X 1 — p(success) = 0,40 x 0,40
= 0,16 donc 16%

— Une fois sur les deux essais ? °
o
3
©
)
— Deux fois sur les deux essais ? o
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E
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o
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https://www.youtube.com/watch?v=6YzrVUVO9M0&t=173s

Loi Binomiale
Rappel

© 2025 Romain di Stasi.

€ Cas d’une étude sur les déterminants des troubles du sommeil chez les enfants de 2 a 3 ans

— Je sais que le pourcentage d’enfants atteint de trouble du sommeil dans la
population d’étude est p = 0,17 ou 17%.

— J’ai une taille d’échantillon de n =10 et un nombre de personnesdans mon
échantillon qui ont ce trouble de k = 4

La question que [’on se pose est : cet echantillon provient-il
bien de la population étudiee ?

320Uy A1yl op 2413 9)dwaxa @
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https://www.youtube.com/watch?v=AOYGaUsiqV0&t=1104s

Loi Binomiale

© 2025 Romain di Stasi.

Donc, quelle est la probabilité d’observer 4 malades dans un échantillon de 10 sujets pris au
hasard, sachant que la prévalence de la maladie est de 17 % ?

(1) Soit cette probabilité est élevée, et dans ce cas, l’échantillon observé peut
s’expliquer par une simple fluctuation aléatoire.

(2) Soit elle est faible et I’échantillon ne représente pas la population.

Ce qu’on va chercher a faire c’est de comprendre par étapes :

(1) Quelle est la probabilité d’observer k individus possédant une caractéristique donnée...
(2) Dans un échantillon de n individus

(3) Tirés dans une population ou la proportion p de la caractéristique est connue.

46
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https://www.youtube.com/watch?v=AOYGaUsiqV0&t=1104s

Loi Binomiale

© 2025 Romain di Stasi.

Caractéristique = trouble du sommeil k 4

Taille d’échantillon o 10 Quelle est la probabilite de k succes au bout de

n tentatives sachant que la probabilité p de

Proportion de sujets porteurs de la 0.17 gagner a chacune des tentatives.
caractéristique de la population ’

320Uy A1yl op 2413 9)dwaxa @
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https://www.youtube.com/watch?v=AOYGaUsiqV0&t=1104s

Loi Binomiale

© 2025 Romain di Stasi.

Caractéristique = trouble du sommeil k 0

Taille d’échantillon o 10 Quelle est la probabilite de k succes au bout de

n tentatives sachant que la probabilité p de

Proportion de sujets porteurs de la 0.17 gagner a chacune des tentatives.
caractéristique de la population ’

320Uy A1yl op 2413 9)dwaxa @
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https://www.youtube.com/watch?v=AOYGaUsiqV0&t=1104s

Pr(0) =

Pr(4) =

Loi Binomiale - cumul des probabilités

© 2025 Romain di Stasi.

0,17°(1 - 0,17)1%79= 0,155 = 15,5 %

0!

0! (10 — 0)!
!

41(10 — 4)!

0,174(1 —0,17)1°7*= 0,057 = 5,7 %

P(k)

0,40 1
0,35 |
0,30 1
0,25 |
0,20 -
0,15 |
0,10 |

0,05 |

0,00

2 1 donc 100 %

v 320Uy A1yl op 2413 9)dwaxa @
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e
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nombre de k

7
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https://www.youtube.com/watch?v=AOYGaUsiqV0&t=1104s

Loi Binomiale - cumul des probabilités

© 2025 Romain di Stasi.

Ceci est une fonction de densité. La distribution théorique

P(k) A que vous étes sensé obtenir si vous échantillonnez un
0.40 | 1donc 100 % certain nombre de participant. Elle est trés importante car
c’est elle qui va nous permettre de comprendre ce qui se
0,35 7 passe statistiquement en tracant une droite de régression.
0,30 -
0,25 -
Vous avez sans doute toutes et tous entendu parler de la
0,20 régression linéaire.
0,15 |
0,10 | Ici ce serait une régression logistique binomiale puisque
0.05 k ne peut prendre que deux modalités 0 ou 1.
0,00 : : : : |_| : D. — . : : >
o 1 2 3 4 5 6 7 8 9 10

nombre de k
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P(k)

0,40 1
0,35 |
0,30 1
0,25 |
0,20
0,15 |
0,10 |

0,05 |

0,00

Z 1 donc 100 %

Loi Binomiale - cumul des probabilités

© 2025 Romain di Stasi.

Ici ce serait une régression logistique binomiale puisque

P(k)
0,40

0,35
0,30
0,25
0,20
0,15
0,10
0,05

0,00

2 3

U
4 5

6

nombre de k

7 8 9 10

k ne peut prendre que deux modalités 0 ou 1.
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Loi Binomiale - cumul des probabilités

© 2025 Romain di Stasi.

P(k)

0,40 En tracant cette droite, nous pouvons

035 comprendre la relation qui existe entre deux

’ variables, qu’il s’agisse de deux variables

0,30 quantitatives ou d’une variable quantitative
et d’une variable qualitative (par exemple :

0,25 groupe controle vs groupe test)

0,20

0.15 C’est le méme principe que la régression

’ linéaire mais avec X pouvant prendre que

0.10 deux valeurs 0 ou 1.

0,05

0,00
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Loi Binomiale - cumul des probabilités

Pour placer la droite correctement vis-a-vis de cette fonction de densite il existe deux méthodes.

Les moindres carrées dans le cas d’un régression linéaire classique. Cela suppose que
nous attendons a ce que les résidus de la pente (la fonction de densité) suivent une loi
normale et la variance de ces derniers soit homogenes comme illustré ici.

Pour tous les autres cas nous appliquons le
maximum de vraisemblance.

Variance homogene

53
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Maximum de vraisemblance

Appliquons maintenant le maximum
de vraisemblance a la loi binomiale

54



Maximum de vraisemblance
Rappel

|
. 7
1 1
H3 =41,99 %
I I
(34,66 x 12,4) : 100 = 4,30 %
I I
1 1 H4 = 27,38 %
(27,96 % 10) : 100 = 2,80 %
I I
(23,41 x 8,4) : 100 = 1,97 % H5 = 19,26 %
I |
I
I (13,98 x8,4):100 = 1,17 % H6 = 11.44 %
I ?
A Prior . Posterior
Vraisemblance

|—' La probabilité de nos données

sachant notre ou nos hypotheses

Prior Posterior

Donc

)
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Maximum de vraisemblance
Loi Binomiale

€ La vraisemblance est une fonction notée :

Probabilité d’observer les données si le parametre du
modéele est 6

@ Le parameétre 6 c’est le ou les paramétres inconnus que |’on cherche a estimer, il peut suivre un
ensemble de loi de probabilité comme la loi normale, la loi de poisson (qui ont tous deux plusieurs
parametres) mais ici nous commencerons par loi de Binomiale qui n’en possede qu’un 8 = p, dont p
est une probabilité fixe.

€ Ensuite, nous avons ce que nous avons mesuré qui nous ’espérons suit la méme loi, indépendante et
identiquement distribuée notée {x,, x,, ..., x,,}, elle suivront une loi de probabilité f(x | 0)

‘ La fonction de vraisemblance est donc : Fonction de densité dans laquelle nous avons
/ la probabilité d’observer x; selon

e

Le produit de toutes les probabilités en
supposant qu’elles soient indépendantes

56
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Maximum de vraisemblance
Loi Binomiale

€ On cherche ensuite le maximum de vraisemblance (MLE)

L’idée ici est de trouver la valeur de 6 qui rend les données les plus probables. Formellement ca

donne:
Rappel
A l Fonction de densité
0,20 7ZQ< 99@
| L (%)
_ 0P L@ =[ [re o) o
= 0,10 J i=1 83% e o =
0,00 e >
0 5 10 12 34 56 7 8 91011 12
Exemple .

@ Supposons que je lance une piéce 10 fois, donc n = 10 et que j’observe k = 7 faces. Je veux
estimer p, la probabilité de tomber sur face. La vraisemblance de la loi binomiale est :

Puisque la loi binomial c’est flp) = (;) pY(1 —p)* Y

@ Le maximum de vraisemblance correspond au p qui maximise cette expression
o7
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Maximum de vraisemblance

© 2025 Romain di Stasi.

A
0,20

0,15 |

3 0,10

0,05 |

P(k)
0,40

0,00

0,20 1
os. 0,15
D
= 0,10
0,10
0,00 : . >

0 5 10 0,25

A

0 5 . 10 0’05

_ A
0,35
e
: Ol >

Loi Binomiale

-

0,00

Cette méthode peut s’appliquer a

‘A“‘_A_j\ ’
O 1 2 3 4 5 6 7 8

9 10
X

tous les type de distributions >



Maximum de vraisemblance
dans une regression

€ Concretement que fait le maximum de vraisemblance par étapes :

Etape 1: Ce que [’on cherche

On a des points dispersés sur un graphique (valeurs de x et y) — par exemple, taille de ’enfant et nombre de
mots qu’il connait. On veut trouver une droite qui colle le mieux a ces points.

Etape 2: On essaye des droites

Certaines passent trop en dessous ou au-dessus des points, d’autres passent pile au
bon endroit : c’est la meilleure droite.

59
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Maximum de vraisemblance
dans une regression

€@ Concretement que fait le maximum de vraisemblance par étapes :

Etape 3: Une idée de "chance"

Pour chaque droite, on peut se demander : “A quel point cette droite rend mes données
probables ?”

Autrement dit : si cette droite était la vraie, a quel point serait-ce normal d’observer ces points
aussi proches (ou éloignés) ?

Au final la méthode du {naximum de vraisemblance/

C’est une méthode qui :

— Teste plein de droites différentes.
— Mesure pour chacune la "probabilité d’avoir obtenu ces données

— Choisit la droite qui rend les données les plus probables.
60
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Le maximum de vraisemblance : méthode couramment utilisée pour estimer les parametres d’une
régression linéaire généralisée (mais pas exclusivement). Elle consiste a ajuster les données en

choisissant la loi de probabilité appropriée pour les résidus (e.g., binomiale, Poisson, Gamma, etc.).

r Si ’on adopte une approche plus proche de la philosophie bayésienne, puisque le maximum
de vraisemblance restreint ’espace dans lequel notre modele va chercher les parameétres a
l’image du prior. Par exemple, un temps de réaction de 1000 secondes n’est pas réaliste ;
de méme, une loi Gamma n’ira pas explorer des valeurs aberrantes de ce type.

L’approche bayésienne pousse cette logique encore plus loin : au lieu de chercher une
4 seule “meilleure valeur” des parametres, elle considere toutes les valeurs possibles et
indique leur degré de plausibilité (en combinant les données et nos croyances préalables,
appelées priors). Comme il est souvent trop compliqué de calculer cette distribution
directement, on utilise des simulations par chaines de Markov (MCMC) voir ici pour un
exemple, qui permettent d’explorer progressivement ’espace des parametres. On obtient
_ ainsi non pas un seul chiffre, mais une distribution complete de possibilites.

© 2025 Romain di Stasi.
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https://chi-feng.github.io/mcmc-demo/app.html#HamiltonianMC,banana

Notion de Chaine de Markov

€ Lidée clé : le futur ne dépend pas du présent, mais du chemin qui l'y a mené.

Un exemple tres simple la météo : on imagine un cas tres simple de météo ou il n’y a que

deux possibilités :
'@ [ 3
At ‘50
On dit qu’aujourd’hui il fait soleil. Demain selon notre modele il y a donc 70 % de chance qu’il fasse

beau et 30 % de chance qu’il pleuve. Et si aujourd’hui il pleut alors : il y a 60 % de chance qu’il
continue de pleuvoir et 40 % de chance que le soleil revienne.

Ce modele est un Chaine de Markov:

@ Tu passes d’un état (temps) a un autre
@ Avec certaines probabilités de transition

@ Et a chaque étape, seul ’état actuel compte pour prédire le suivant

© 2025 Romain di Stasi.
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Notion de Chaine de Markov

Une chaine de Markoyv, c’est comme un jeu

Imagine que tu jettes un dé ou que tu avances sur un jeu de plateau : Ton
prochain mouvement dépend de la ou tu es maintenant. Tu n’as pas besoin
de te rappeler comment tu es arrive la.

Une chaine de Markov, c’est une suite d’étapes ou chaque nouvelle étape
dépend uniquement de la précédente, pas de toute Uhistoire. En
statistiques, on 'utilise pour simuler plein de scénarios possibles et explorer
les valeurs probables d’un parametre.

© 2025 Romain di Stasi.
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Critique de la p-value et Facteur Bayéesien

€ Je suis enquéteur et je veux savoir combien j’ai de personnes dopées chez mes 19 premiers
coureurs.

—— Je sais que ’un des principaux symptomes de dopages est un taux d’hématocrite (i.e., quantité de
globules rouges dans le sang) particulierement élevé - 50%

€@ 8 sur les 19 cyclistes sont testés avec un taux éleve.

—— Donc 42 % de mon échantillon

€ On sait que dans la population générale seul 13 % des
sujets ont un hématocrite

— L’idées est de calculé la probabilité qu’on
ait Prop,pserve = 42 % alors que Propgitendue = 13 %

320Uy ALIaIy] ap 2413 91dwaxa 0

Test du chi deux Ou p-value

Loi binomiale
64
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https://www.youtube.com/watch?v=5hN_plbtPjw&t=31s

Critique de la p-value et Facteur Bayéesien

@ 8 sur les 19 cyclistes sont testés avec un taux élevé.

—— Donc 42 % de mon échantillon

€ On sait que dans la population générale seul 13 % des sujets
ont un hématocrite

— L’idée est de calculer la probabilité qu’on
ait Prop,pserve = 42 % alors que Propgttendue = 13 %

HO : Propobserve = Propattendu

Hl : Propobserve > Propattendu

p = 0,002

€@ Mais ce n’est qu’un symptome. Il y a d'autres raisons pouvant
expliquer un taux élevé d’hématocrite.

S1190uy ALIaLy ] op 3413 91dwaxa O

—— Un séjour a la montagne
65
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https://www.youtube.com/watch?v=5hN_plbtPjw&t=31s

Critique de la p-value et Facteur Bayéesien

© 2025 Romain di Stasi.

@ 8 sur les 19 cyclistes sont testés avec un taux élevé (> 50%).

— On trouve une étude qui montre que lorsque les individus consomment un produit X, 50% des
participants ayant consommeé ce produit dopant montent a 50%

€@ On peut donc réaliser un autre test en évaluant le
pourcentage de personnes ayant un taux
d’hématocrite supérieur a 50 % par rapport a une
probabilité attendue de 50 % si 100 % des 19 coureurs
avait consommé un produit dopant.

— |Ici on aurait Prop,pserve = 42 % alors que
Propattendue = 50 %

Hy : Propopserve = PTODgttendu

Hl : Propobserve > Prapattendu

320Uy ALIaIy] ap 2413 91dwaxa 0

p =0,32ns

A Ici on est tres ennuyé puisque on ne peux ni accepter H, ni la rejeter... 66


https://www.youtube.com/watch?v=5hN_plbtPjw&t=31s

Critique de la p-value et Facteur Bayéesien

€ Pour résumer on a deux études

— La premiére montre un résultat significatif mais n’est pas claire dans H1, on ne sait pas
combien sont dopés, on a aucune probabilité de trouver un individu dopé dans la population

— La seconde ne permet pas de conclure...

@ Si on part de ’hypothése que la population de cycliste étudiée est une population dopée
en utilisant une approche bayésienne basée sur la vraisemblance on aura...

Puisque pour rappel la formule de la loi binomiale est :

V(Haopage) = 0,144

3)19ouy A1y ap 2413 91dwaxa o

A

Attention la vraisemblance n’est pas un probabilité et ne s’interpréte sirement pas comme la
probabilité d’observer cet échantillon si mon hypothése est vraie. Elle n’est pas suffisante seule. 67
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https://www.youtube.com/watch?v=5hN_plbtPjw&t=31s

Critique de la p-value et Facteur Bayéesien

€ On peut faire I’hypothése inverse en mesurant la vraisemblance des données selon I’hypothése

que mon échantillon appartienne a ma population normale.

V(Hepoqn) = 0,00133

€9 On voit bien que nos deux vraisemblances

{V(Hdopage) = 0,144 V(Hdopage) = 0,144
V(H;ieqn) = 0,00133 V(Hjegn) = 0,00133

= 108,27 = 108

@ Cela signifie que maintenant qu’on a recueilli les données la vraisemblance de I’hypothese
dopage (Hgopage) €st 108 fois plus forte que celle d’une absence de dopage (Hcjeqn)-

— (C'estce qu'on appelle le Facteur de Bayes : plus il est élevé, plus ’hypothése est
vraisemblable.

© 2025 Romain di Stasi.
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https://www.youtube.com/watch?v=5hN_plbtPjw&t=31s

Critique de la p-value et Facteur Bayéesien

@ Juste pour étre sir : si j’ai un facteur de Bayes de 2, que cela signifie-t-il ?

P IHy) _
P(D [H,)

Le résultat est deux fois plus vraisemblable sous H,

69
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